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Abstract 

In this paper, we derive and generalize the methods of Buneman 

for solving elliptic partial difference equations in a rectangular 

region.   We show why the Buneman methods lead to numerically accurate 

solutions whereas the CORF algorithm may be numerically unstable. 

Several numerical examples are given and discussed. 
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Introduction 

In the first part of this report, we described several direct 

methods for solving linear equations arising from elliptic partial 

difference equations.    In this part, we develop the Buneman algorithms 

which are closely related to the Cyclic Odd/Even Reduction and 

Factorization (CORF)  algorithm which was derived in the first part. 

We then show why the CORF algorithm is numerically unstable whereas 

the Buneraan algorithms yield numerically accurate results.   Finally, 

we describe some numerical examples and compare the time and accuracy 

of several methods for solving them. 
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10.    Accuracy of the CORF algorithm 

As will be shown in Section 11, the CORF algorithm and the Buneman 

algorithms are mathematically identical.    The difference between the 

methods lies in the way the right hand side is calculated at each 

stage of the reduction.    To the authors'  knowledge, this is the only 

direct method for solving linear equations in which the right hand side 

of the equations plays an important r&le in the numerical solution of 

the equations.    In this section, we show the difficulties encountered 

in using the CORF algorithm.    In Section 15, we will prove the stability 

of the Buneman algorithms. 

Cr)   fr) Recall from Section 5 that it is possible to compute   Av  'y.  ' 

by the following algorithm: 

Jo = -2y (r) Jl = ^i 
(r) 

% = -H s-l 
2 

- T 1! Js~2 for    s = 2,5> 

so that 

1 r = Awy   ' 
~2 ~J 

Because of roundoff error, one actually computes the sequence 

jb = -^r) • 3i=^r+ ^o 

2 ~ 
X » -AT).,,  - T    n _. + 6 Js        "Js-1 s-2    rs-i 

10-1 

(s = 2,...,2r) 

(10.1) 

(10.2) 
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where   5s    is the perturbation induced by the roundoff error.    Again 

as in Section 2, we write 

A = QAQT       ,      T=QnQT 
(10.3) 

where   Q   is the set of orthonormalized eigenvectors of   A   and   T , 

and   A   and   Cl   are the diagonal matrices of eigenvalues of   A   and   T , 

respectively.    Thus substituting (10.3) into (10.2), we have 

Sn « -2y     ,      I, = - i A lrt + Tr ^0 !1 2" ZO     „0 

is= -A is-i - Q2is-2+ is-i 

(10 Aa) 

(10.4b) 

where 

-     r?  (r) y = Q yj ' is ■ <? l T 
~S 

T 
QSs 

Because A and Q   are diagonal, we may write an equation for each 

component of ls ; viz. 

W+   Vj,8  +   Öid   ^S-l   =   Tj,S (j  = 1,2,...,p) . (10.5) 

The solution of (10.5)  can be given explicitly.    Consider the characteristic 

equation 

<p (a) = a2 + \ a+ (a2 = o 

which has roots    ß     and   y   , then 

10-2 
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ßs-l       s-1 

ßj - ^    ^,1      'J'J    Pj  - /j '^0 

s-1   _s-k        s-k 

k = l 
ej-7j 

J^k when      ß    ^ 7j (10.6a) 

11 

s-1 
= ^hA-^^i.O*^ (s-^ßj8-11-1 TJ)k   when   ßj =r. . (10.6b) 

Let 

0 
G 

-\./2ü3. = cos 0. when    |\./2ü:. |  < 1 

= cosh z. when    |\ /2a3.| > 1 

Then using the initial conditions (10.4a), we may write (10.6a) as 

follows: 

e s-1 -    sin (s-k)O. 

I 

when    |\./2Cü.| < 1 (10.7a) 

0 
0 
0 
D 
0 
I 

s-1 sinh (s-k)z. 
■2®. cosh(s  zjy^  +   V   05^"  5 i T 

J J   J      A),    d sinh Zj        Tj,k 

when    j^./ausj >1    . (10.Tb) 

Note that 

10-3 
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cos 
s 

-2w. X 

J cosh s z. 
J 

given in Section 3. Thus 

---·-where 

= 0 

sin m Qj 

sin Q. 
J 

sinh m zj 

sinh zj 

for i /= j 

Therefore, if 1Aj/2mjl > 1, the effect of the roundoff 

error can be catastrophic. However, if IA./2w.l < 1 , we see from 
J J -

(10.8) 

(10.9) that q may be a good numerical approximation to A(r)y~r) 
_2r -J 

We now apply the above results to Poisson's equation with 

Dirichlet boundary conditions •. For the five point difference operator 

with mesh width 6x in the x-direction and ~ in the y-direction, 

we have 

2 ..J!!..)] Aj -2(1 + p (1 - cos p+l , mj = 1 

10-4 
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and 

p = (Ax/^y)  or  (^jr/Ax) 

depending on how one orders the equations. By inspection 

1^/2^ | > 1 

for all j  ; and hence for large    s , equation (10.1) leads to a 

numerically unstable algorithm.    A similar result holds for the nine 

point difference approximation to Poisson's equation.    Using the five 

point approximation with uniform mesh and any number of grid points, 

equation (10.9) predicts severe loss of accuracy for more than five 

contractions on a CDC 6600; and this has actually been observed.    As 

noted in Section 5, Hockney [6, 7] has combined one or more steps of 

CORF with the fast Fourier transform to produce a Poisson solver.    For 

such a use of CORF one must pay careful attention to the above results. 

The cyclic odd/even reduction method can be used successfully 

for solving tridiagonal systems of equations.    In that situation,  one 

must make provision for the fact that overflow can occur during the 

reduction stages. 
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11. The Buneman algorithm and variants 

In this section, we shall describe in detail the Buneman algorithm 

[ 2 ] and a variation of it. The difference between the Buneman algorithm 

and the CORF algorithm lies in the way the right hand side is calculated 

at each stage of the reduction. Henceforth, we shall assume that in 

the system of equations (2.5)  T = I . the identity matrix of 

order p . 

Again consider the system of equations as given by (2,5) with 

fc<-l q = 2  -1 . After one stage of cyclic reduction, we have 

X   + (21  - A )x + x   = y   + y Ij+l ' % (11.1) 

for J = 2,U, ...,q-l with x = x . = 0 , the null vector. Note that 

the right hand side of (11.l)may be written as follows: 

I 
I 

^ = £)-i+ ^+i - % - A(1)A'1yj+ yj-i+ yj+i - ^'\    ^) 

where   A^1^ = (21    - A2)  . 

Let us define 

Then 

(1) „    -1 (1) (1) 

(1)   .(1) (1),.  (1) 

n-i 

(11.3) 
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After   r   reductions, we have by (5.5) 

ij S^1' = (y(r). * y(r)J - A« y'
r> 

'j-2r      "j+S1" ~J 
(11A) 

Let us write in a flashion similar to (11.5)> 

y-^tf**?    ■ (11.5) 

Substituting (11.5) into (11.4) and making use of the identity 

(A^)2 = 21   -A^1'    from (5.5), we have the following relationships: 

pf« = pW - (AW)-1(p(')  . P(^r - >), 
0 J -d-2r      ~j+2r      ~J 

Sj (^-a^    +a^    -an^1) 1      r      .      r - 2pi 

(11.6a) 

(11.6b) 

5w-l k-r for   J=i2—    (i = l,2,...,2K-r-l)    with 

S*) - ^)    = q(r) = ,(r)    _ 
?2k+i   So      32k ro      ?rtk+i   So      SJC+I   z    * 

To compute (A^^'^p^^ + p^^ - qjr^) in (11.6a), we solve the 

system of equations 

~J-2       ~j+2r     '-J 

V - tf 

11-2 
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(r) where   Av   '    is given by the factorization (5.10), viz. 

L(
r) = . ft   (A + 2 cos 0^r) Ip)    , 

e(r) = (2d  - l)n/2rfl 

After   k   reductions, one has the equation 

AW x ,. = AM p(J) + q(J) 

and hence 

~2        ~2 ~2 

fk) (k) -1    (k) 
Again one uses the factorization of   Av  '    for computing    (Av  ')     qv, ' 

~2 

In order to back solve, we use the relationship 

x +A(r)x. + x = A^ pW + >) 

for    J  = i2r    (i = 1,2, ...,2k+1-r-l)    with   x0 = ^ i^i = * • 

For    j = 2 ,5*2 ,...,2     -2    , we solve the system of equations 

A^ ■ P^) = ^ - (x_^ x_r) , (11.7) 
-j^  ~d+2* 

(r) using the factorization of Av ' ; hence 

11-5 

-i^ ■■■      -       -   ■      -    mum—■»»—<— 



———BBB HgwawaroaangBB "-n.:. 

x, = pW + (x,  - pf) (11.8) 

Thus the Buneraan algorithm (variant l) proceeds as follows: 

r 

o 

i 
I 
i 
i 
i 
i 

1) Compute the sequence    {p^     > <l\    }    by (11'6) for 

r = 1,...,k   with   p!0^ = Ö     for   J = 0,...,2k+1 , and 

qj0) =y.      for    J = 1,2,.. .,2k+1-l . 

2) Backsolve for   x.    using (11.7) and (11.8). 

(r) It is possible to eliminate the sequence    (p.    }  .    From (11.6b), 

we note that 

where 

p^1)  =i{q(r)    +q(r)    -a(r+l)) 

r-l 

(11.9) 

h = 2 

Using (11.9) in (11.6a) and modifying the subscripts and superscripts 

appropriately, we have 

,0*1) _ fl(r) 
k ~ 5j-2h 

(r-l) ,     (r)        (r-l) J    (r)    . 
ij-h h Sj+h ^+2h 

(11,10) 

11-1* 
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for    J  = (2r,2r+1,...,2k+1-2r)    with 

(r)        fr) 
ein     = ^ Hi  = e for all   r , 

"2  

(0) v+i 
n.,      = y- for    j- 1,2, ...,2K   -1 , 

f     " n^1)   - " H  v -  2A"1 v for     i   - 2 1+ 2k+1 2 

To solve for    x. , we uae the relationships  (11.7) and (11.9) so that 

1 , (r-l) A     (r-1)   (r)x 

n 
H Thus the Buneman algorithra (variant 2) proceeds as follows: 

(r) 1) Compute the sequence fq. ;} by (11.10) for r = 1,2,...,k . 

2) Backsolve for x. using (11.ll). 

Note that the Buneman algorithm (variant 2) requires half the storage 

that the Buneman algorithm (variant l) requires. However, the 

variant 2 algorithm requires approximately twice as many additions. 

The p. 's and q. 's can be written in terms of the x. 's. In 

Section 15, we shall show how this affects the stability of the methods. 

Note 

11-5 
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and 

i? -A'1 it - li * ^.i+ jj+i' 

si1' = i^ * ^ ■ ^ 

- 2,1-2 -  t^-1 A(1)(iJ.l 
+ ^+1) + l^ 

L 

0 

D 
0 
0 
D 
D 
Ö 

D 

By an inductive argument,  it is possible to show that 

>)  - 
,r-l 

- h + t-1)"1 s(r)  I, ^-(a-i) + f.Ha-i)) 

and 

(r) q.      = x 

(11.12) 

'0^ 
M-ifsWAW^ (11.13) 

where 

s(r) = (A(r.l) A(r-2)   t>#A(0)rl 

11-6 
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12.   Applications of the Buneman algorithm to Polsson's equation 

As was pointed out in Section h, matrices of the form (2.5) 

arise in solving the five point finite difference approximation to 

Poisso^s equation over a rectangular region with Mrichlet boundary 

conditions and hence it is possible to use the methods of Section 11. 

For the five point approximation to Polsson's equation over a rectangular 

region with Neumann or periodic boundary conditions it is necessary to 

modify the Buneman algorithms. 

For the Neumann boundary conditions, we have the system of 

equations 

^0     + ^1 lo 

x. n + Ax.      + x..n     =   y. vJ  = l*2^ ...,m-l) , 

2x    ,+ Ax =   y with    m = 2 
»,m-l       -,m ^m 

,k+l 

We define 

(1) 
h for    J = 0,2,k,...,2 fc+1 

where 

,(1) (D- (1) _   -1 (1) _   ( (IK 
Bo      A    ^0 ' So    " 2{li " ?o   ;   ^ 

.(1) . ft-i ,(1) (1) it - A h' sr = h-i+^1 - ^r   {i - 2'u'""m-2)' 

S1) - A"1 .(D   - (1)> VK J =A"xy   , <CJ =2(y   . -Pvx/)     • fm im ' jn vim-l     „m    ' 

12-1 
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In general then,  as in Section 11, we have for   r = 1,2, ...,k-l 

V~i 
(r+1)  =A(r+l)  (iH-1) +    (r+1) 

?J 

where 

^■^-^rWl-gh . j<m) - ^'J-^h 

h [^   ^'''-(A^'rV^^^'    -q«)   ,   .^   =,(r'    ^«-ap^   , 
~j-2r    ~i+2T   ~J ~.i-2r    ~j+2r      ~J 

for    j  = i2r+1      (i - l,2,...,2k"r-l) 

(r+1)        (r)     ..(r)^^,,, (r)        (r).        (r+l)      0 (r)      ^(r+l) 

ra-2 m-2 

Finally, 

(m) 
y k 

B(k+1)    p(k+l)    +    q(kfl) 
(12.1) 

where 

B(k.i) = kl m ^Mf 

P(k+1)   = ^k^  -   (^(P^  + P^, - 5(
k

k))       , (12.2) 

(:^i)      (k) J   (k) r.     /  = a-     + av. .. ,     _ .   .   .     ,_.,        ,,   (k+1) 
32k     = So   + S2kii" %k 

12-2 
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From (5.^^ we see that 

B(^l)x     = B(k+l)p(k+l) + ^1) 

-2k 

I 
i   * 

so that 

x v=p^r1' * (B(kti))- q'r1' :2k - i2k ~2K 

(B^        /I i, indicates a solution to the singular system 

tl 

I 
I 

B(k+1\x .   - p^1^)  = ^iT^  •    The factorization of   B(fcfl) is given by (5.6). 
~2       ~2 ~2 

The backsubstitution process proceeds as in Section 11.    It is also 

(r) possible to eliminate the   p^ '    sequence as was done in the previous 

section. 

For periodic boundary conditions, we have the system of equations 

Ax, + + x0  + x   = y, „1    ~2    .jn     X,l 

x   + Ax   + x-+1 
= y^  for J = 2,5)...,m-l , 

x,  + x n + Ax    = y 
„1    ~m-l   „m     im 

We define 

h ^ = A^pW + q^    for J=2A...,2 5d 
te-1 

where 

12-5 
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^ = *%   '   ^ - ll-l + li+1 " ^     '    (J = ^6—>m-2) > 

T)(l) -AS a(l) - v   + v       - 2I>
(1) 

In general for   r = 1,2,..., k-1 , 

(r+1)      .(i+l) (r+1) ,     (H-1) ,r+l for    j = iS1^"1-    (1 = l,2,...,2K-r) 

where 

(r+l)=p(r)    - (A(r))-Vr) + P(r)   ^(r)  )    <l(r)    -q
(r) + a(r)   -Z*^ ,r+l       t0r+l ^ r     '     r   H r+l" ^ r+1 " H r   ' ^     r " ^ rfl ~2r      ~5x2      ~2 ~2I^X      -2r      ~3x2r      ~2I^X 

D 
G 

S^ = p(rWrVVr)+P(rUir)) > .S^ = .(r)^^l-^^ £j        ^d ~J-2r    tJ+2r   ~d ^J ^-2r    ~j+2r      ~J 

~2r      ~in-2r    ^ ^ ~2r      ~m-2r     ~m Sn     tm 

0 Finally as (12.1), 

G 
D 
0 
D 
0 

where 

(k+1) _R(k+l) ^(k+1)   (k+1) 

~2 ~2     ~2 

12-U 
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^D.JW . (A«)-^W .>), , *(«'=*,« VJT1' 

and   B (k+1) is defined by (12.2).    Then 

li 

11 

BC^X ^ = B(M) p^1' + s^« 

so that 

T   ) x. = p'r1' - (B(kti))- q'ir11  . 
~2k      ~2k 

li 

The backsubstitution process proceeds as in Section 11. 

fr) (r) It is possible to express   p.  '    and   q^        in terms of   x     as in 

equations (11.12) and (11.13). 

1 
1 
I 

12-5 
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13.   Accuracy of the Buneman Algorithms 

As was shown in Section 11, the Buneman algorithms consist of 
. (T)    (r), 

generating the sequence of vectors    {p^ ',qi    j  •    Let us write using 

(11.12) and (11.13) 

where 

and 

Then 

(r)       (r) A     (r) 

q
(/) = x + x - A^) >) 

„J ~j-2r      ~d+2r ~J 

■X-l 

9
(r) MA^   ...A^O (O)x-l 

|pjr)-x^|!2   <  HS^ILJx' 

.(r) 
^J 

(13.1a) 

(13.1b) 

sf - i-ir1 s^ l T.^.^ +1^^)      (15.2) 

(15.3) 

(13-M 

(x     r + x     JIL   <   llS^A^L llx|l' (15.5) 
~d-2r    ~J+2r    2 2  "~ 

where 

v II     indicates the Euclidean norm of a vector   v , 

C II     indicates the spectral norm of a matrix   C , and 

IN!'- £ IKIL- 
j=i ~J 2 

13-1 
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When   T = I   , we may redefine the polynomials given in Section 5 

in the following way.    Let 

* = -a/2   , 

and define 

\|f = cos 0       for    Ul < 1 

= cosh Q     for    l\|f| > 1 

Then in a similar fashion to (J.0.8), 

p , (a)  = -2 cos(2k cos"1 vjf) for    Itl < 1 
2K ~ 

= -2 cosh(2k cosh"1 i/)      for    |\|f| > 1   . 

Thus for   A = A   , 

lls^ll^ftlKA^)"1«, 
2    j=o 

r-1 
ft *** lip iWr1! 
J=0    {X^        2J 

where    {\±)    are the eigenvalues of   A .    Therefore for    IX.J  > 2 , 

r-1 
lS(r) L = 2"rTT »MX [cosh 2d 0.]'1 

J=0    {0^ 

where 

-1 0i = co8h"x(-^/S)      . 
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Finally, 

18^ A^)^ = 2-rfl 
x max / I "IT [cosh ^ e< l'1 1 \*S\\& i      j 

when    |\.|  > 2    . 

x cosh 2   0. 

0 
0 
0 
c 
0 
0 
c 
0 
0 
0 
0 
0 
0 

For the five point difference approximation to Poisson's equation 

over a rectangular region with Dirichlet boundary conditions 

\± = -2(1 + p2(l - cos ^)) 

where   p = £x/£w     or      (^jr/^c)    depending on the ordering of the 

equations.    Thus 

-1 in 
i * co8h"-L(l + pil - cos ~)) 

which iniplies   0. > 1   for all   i .   Then 

max [cosh 2J 0, j"1 = [cosh 2^ {cosh^Cl + p2(l - cos ^r))}]"1 

[oj i ^1 
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Thus after some simplification, 

n 
.(r), 

-cO, 
-co. 

'2 r-1 

n -2J+1e 
<   e 

A   (1 + e "        J 
) 

(15.6) 

2,. where   c = 2 -1 ,    cosh 0.  = 1 + p (l - cos -)  . 

A similar calculation shows 

|!A(r) S(r)ll2 < 2 e P 
(13.7) 

i 
1 

I 
I 
1 
1 
1 
I 
1 

Therefore from (13.6) we see that for large   r ,     p^r'   will be a 

good approximation to   x.  .    And from (15.5) and (I5.7), we see that 

IIllr)-(*     r 
+ x     r)|L   <   2eP     ||x||' 

~J -j-2r      ~j+2r    2 

(T) so that the   \\q\  J\\     remains bounded throughout the calculation.    This 
~j       2 

explains why the Buneman algorithms lead to numerically stable results 

for solving the finite difference approximation to Poisson's equation. 
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1^. Conclusions 

The Appendix contains the results of some numerical experiments 

involving the application of the Buneraan algorithm (variant 1), the 

method of matrix decomposition, the method of point successive 

over-relaxation (cf.  [10]), and the Peaceman-Eachford alternating 

direction method (cf.  [11]) to the five point finite difference 

approximation to Laplace's equation over a rectangle with Dirichlet 

boundary conditions.    In these experiments the Buneraan algorithm was 

the most efficient and accurate; however, the method of matrix 

decomposition was competitive in several cases.    We conclude, therefore, 

that the Buneman algorithm and the method of matrix deconposition 

are useful methods in the situations where they apply. 
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Appendix 

Numerical Experiments 

In order to gain computational experience with the methods of matrix 

decomposition (MD) and the Buneman algorithm (variant l), it was decided to 

apply the algorithms to the five point difference approximation of Laplace's 

equation with Dirichlet boundary conditions.    In addition, in order to 

compare these methods with established methods,  it was decided to apply 

the methods of point successive over-relaxation (SOR)   (cf. [10]) and 

Peaceman-Rachford alternating direction method (PR)  (cf.  [11]) to the 

same problems.   We did not attempt to determine which method is best in 

general.    Those interested in operation counts,  variations of these direct 

procedures, and customizing the direct procedures for particular problems 

are referred to [U] and [7]. 

The following problems were chosen so that the computed error could 

be detemined exactly: 

Problem #1,    u = 1  ; 

Problem *2,    u = cos(x)  cosh(y)   ; 

Problem +3,    u = e  (sin(y) + cos(y))   ; 

Problem *U,    u = x5 - 10x5y2 + 5xy    . 

Let 

and 

u = <computed solution of the difference equation> 

I 
1 
I 
I 

d =    "^Jlü j, 1.0}  ; (mesh)l'     ' '        J  ' 

the tabulated error is 

max      [U - ui 
(mesh)   '    d    '     * 

One should note that in many cases the tabulated error is the truncation 

error of the difference equation. 
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Each of these problems was solved on the following meshes (includes 

boundary points): 

Mesh #1 20 by 129 , 

Mesh #2 1*0 by 129 , 

Mesh #5 80 by 129 , 

Mesh #U 129 ^y 129 ^ 

Let   p = Ax/Ay .    Each of the four problems was solved on each of the 

four meshes for five values of   p : 

i Ax ^y pi 

1 .025 .00025 .01 

2 .025 .0025 .1 

5 .025 .025 1.0 

h   ■ .0025 .025 10.0 

5 .00025 .025 100.0 

Thus each problem was solved on a total of twenty rectangular regions. 

These regions were chosen such that the lower left-hand corner of the 

rectangle was always at the origin.    The following is a table of the 

coordinates of the upper right-hand comers: 

Mesh #1 Mesh #2 Mesh #3 Mesh #1+ 

Pi (-5,   .052) (1.,   .052) (2.,   .052) (k.,   .052) 

P2 (.5,   .522) (1.,   .522) (2.,   .522) {k.,   .522) 

p5 (.5, 5.225) (1-,  5.225) (2.,  5.225) {h.,  5.225) 

Pk (.05, 5.225) (.1,  5.225) (.2,   5.225) i-K 5.225) 

Pq (.005, 3.225) (.01,  5.225) (.02,  5.225) {.Ok,  5.225) 
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We define 

V(p*i>j) = max (solution of prob #p on region with p. and mesh #j} 

- min (solution of prob #p on region with p. and mesh #j) 

Note V(l,r,j) = 0 for all i and j . The following tables give V 

for the other problems: 

V(2,i,j) 

Mesh #1 Mesh #2 Mesh #5 Mesh #U 

pl 
.1 .kB 1.57 2.0 

P2 • 15 .hl l.hh 2.1 

03 
11.1 11.1+ iS.k 21+.0 

Pu 11.0 11.0 11. 11. 

0^ 11.0 11.0 11. 11. 

*' I 

V(3,i,j) 

Mesh #1 Mesh #2 Mesh #5 Mesh i 

Pl •59 1.61+ 6.22 23.6 

p2 .95 2.21+ 7.81+ 29.2 

p3 
5.,8U 6.52 17.2 58.5 

% 
2.56 2.7 2.97 3.36 

Or 2.1+6 2.1+7 2.5 2.53 
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V(^i,j) 

Mesh #1 Mesh #2 Mesh #5 Mesh #U 

pl .018 •77 28.2 525.0 

p2 •07 .92 28.5 525.0 

p3 219-5 1+00.0 556.O 1755.0 

Pl; 22.9 US.2 98.2 158.0 

Pc; 2.29 U.82 9.9 16.1 

For the above rectangles, the opttraum relaxation factor is given by 

ü^(i,d) 
1 + \/l - B2 

ij 

where 

0 
D 
0 
0 
e 
0 
B 
1 

B 

\ =osfe) + =o8(^) 

ij 2(pJ +  1) 

and   N.    is the number of grid points in the x-direction of the J-th mesh. 

The initial guess for S0R and PR was the zero vector. 

The iteration process was terminated when 

max 
(entire mesh) 

ju11! >io-5 

u^-u11 

u n <   10 
-1+ 

Optimum PR parameters were determined by Wachspress's algorithm [11] 
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for cycles of length   2    .   Convergence required 

Un+1 - un 

) 

•5 

max 
(complete cycle) 

[ max 
(entire mesh) U 

,n <   10 

|Un|  > 10" 

Because of this convergence criterion, a short cycle was desirable. 

After some experimentation, it was decided to use a cycle length of 

four exclusively. 

All problems were run on a CDC 6600 (about lU decimal digits of 

accuracy); the FR, MD,  and Buneman programs all used the same tridiagonal 

system solver.    The   Q,   matrix and eigenvalues required by MD were 

computed with the QR algorithm for symmetric tridiagonal matrices.    The 

T matrix multiplications    (Q y)    required by MD were performed with a 

machine language inner product routine which is quite efficient and 

which accumulates the inner products in double precision.    It should be 

noted that for problems with uniform mesh spacing, these matrix products 

may be performed with the fast Fourier transform; and this makes MD 

competitive in speed with the Buneman algorithm.    However, MD is capable 

of handling more general problems such as those with non-uniform mesh 

spacings; in these cases   Q   must be computed and the matrix products 

performed.    Thus the MD routine used in this study gives an indication 

of the kind of performance one might expect with these more general 

T 
problems.    Note also that the matrix multiplication   (Q y)    requires 

A* 

p 
0(qp )    operations.    The Buneman algorithm requires a total of 

0(qp log- p)    operations.   Thus as   p   becomes small, 

MD approaches the Buneman algorithm in speed. 
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The following tables of computation times are normalized by the 

time required for the Buneman algorithm on Mesh #1: 

Computatioii times for the Buneman algorithm (variant l) and MD 

Mesh #1   Mesh #2   Mesh #3   Mesh #^ 

I Buneman         1.0               2.08 ^.51 6.96 

E 
MD                   1.18              3.65 lU.9 Itl.0 

i Computation time for PR 

(These times are averages over all four problems.) 

Mesh #1   Mesh #2   Mesh #3   Mesh #1+ 

B 
Pi 2.56 5.17 9M           15.2 

C P2 U.85 10.5 20.6             30.1 

p3 
5M 12.6 31.2             U7.7 

0 % 
2.56 7.61 15.2             32.5 

c p5 2.25 1+.U9 8.58           13.5 

0 Computation time for SOR 

D 
(These times are averages over all four problems.) 

Mesh #1 Mesh #2 Mesh #3         Mesh #U 

1 pl 1*0.9 89.O 

1 
P2 

p3 

1*5.1 

16.1 

97-9 

60.1 (not run)      (not run) 

1 pli 7.58 32.9 

p5 
7.22 28.8 

1 A-6 
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KexativB c 

Prob 1 Prob 2 Prob 5 Prob 1+ 

Pl M-ll) 7 (-9) 6(-9) 5(-7) 

p2 
2(-11) 5(-7) M-7) 2(-5) 

p3 
5(-15) 2(-6) 2(-6) M-7) 

2(-15) l(-8) l(-8) 2(-9) 

p5 
2(-15) K-io) K-io) 2(-ll) 

Relative < »rror for MD. , Mesh #1 

Prob 5 Prob 1 Prob 2 Prob U 

pl 5 (-7) 5(-7) ^(-7) 5(-7) 

p2 l(-7) 5(-7) J+(-7) 2(-5). 

P5 I(-9) 2(-6) 2 (-6) M-7) 

pU 
2(-10) l(-8) l(-8) 2(-9) 

p5 
8(-10) 7(-10) 7(-10) 6(.10) 

Relative error for PF I, Mesh #1 

Prob 3 Prob 1 Prob 2 Prob \ 

pl 2(-ll) 7 (-9) 6(-9) 5(-7) 

p2 
2(-8) 5(-7) ^(-7) 2(-5) 

p5 
7(-8) 2(-6) 2(-6) M-7) 

2(-9) l(-8) l(-8) 2(-9) 

p5 
8(-15) K-io) K-io) 2(-ll) 
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Relative error for SOI 

Prob 1 

lf Mesh #1 

Prob 2 Prob 3 Prob \ 

1 Pi M-M ^(A) MA) 3 (-6) 

< 
1     | 
1    J 

P2 l(-5) l(-5) l(-3) 2(-5) 

p5 5(^) 1(A) 1(A) ^(-7) 

—] 
Pi^ 5(A) 3(A) 3(A) 9(-6) 

p5 5(A) 5(A) 5(A) 5(-5) 

D 
Relative error for the i Buneman algorithm, Mesh #2 

Prob 1 Prob 2 Prob 3 Prob 1^ 

pl M-n) 7 (-9) 6(-9) 7(-7) 

. J 

P2 5(-ll) 6(-7) M-7) 5(-5) 

P5 
2(-12) 5(-6) 7 (-6) 2(-6) 

n 
u 

Pif 5(-13) 5(-8) 6(-8) 8(-9) 

P5 7(-15) 6(-10) 6(-aj0) 8(-ll) 

~1 Relative error for MD, Mesh #2 

Prob 1 Prob 2 Prob 3 Prob ^ 

I { Pi l(-7) 8(-8) l(-7) 8(-7) 

-1 P2 5(-8) 6(-7) 5(-7) 5(-5) 

P5 2(-9) 5 (-6) 7 (-6) 2(-6) 

0 Pi. 2(-9) 6(-8) 6(-8) 8(-9) 

P5 
5(-10) l(-9) l(-9) 3(-10) 

D 
s 

D A-8 
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Relative error for Ht, Mesh #2 

Prob 1 Prob 2 Prob 5 Prob h 

Pi 2(.ll) 7(-9) 7(-9) 7(-7) 

"2 ^(-8) 6(-7) M-7) 5(-U) 

p5 ^(-6) M-6) 7(-6) 2(-6) 

PU 8(.10) 6(-8) 6(.8) 8(-9) 

Pc; 3 (-12) 6(-10) 6(-lD) 7(-6) 

Relative error for SOR, Mesh #2 

s Prob 1 Prob 2 Prob 5 Prob h 

Pl 
M-iO M-U) 5(A) 2(A) 

P2 7(-U) 5(A) 3(A) 5(-5) 

0 p5 l(-5) 6(A) 2(A) 2(-6) 

i i 

plv 5(^) MA) 6(-5) 7(-7) 

P5 
MA) MA) MA) 8(-5) 

Relative error for the Buneman algorithm. Mesh #3 

Prob 1 Prob 2 Prob 3 Prob U 

1    ! 
! pl M-ii) 7 (-9) 6(-9) 5(-8) 

p2 5(-ll) 6(-7) M-7) 5(-6) 

Ü p5 
K-n) 8(-6) l(-5) l(-5) 

fl 

pH 

p5 

M-13) 

2(-12) 

2(-7) 

^(-9) 

2(-7) 

5(-9) 

5(-8) 

5(-9) 

1 
1 A-9 

1 



f 
f 
n 

n 

o 
D 
D 
I 
I 
I 

Prob 1 Prob 2 Prob 3 Prob k 

pl l(-9) 8(-9) 7(-9) 5(-8) 

p2 l(-9) 6(-7) M-7) 5(-6) 

p5 
8(-lD) 8(-6) l(-5) l(-5) 

PU 8(.10) 2 (-7) 2(-7) 3(-8) 

p5 
8(-10) 3 (-9) 3(-9) 7(-10) 

Relative ( jrror for ER^ , Mesh #5 

Prob 3 Prob 1 Prob 2 Prob 1^ 

pl 
K-n) 7 (-9) 6(-9) 5(-8) 

P2 
6(-8) 6(-7) M-7) M-6) 

p5 
5(-6) 8(-6) l(-5) l(-5) 

pU 2(-7) 3(-7) 2(-7) 3 (-8) 

p5 
K-n) 3(-9) 3 (-9) 3(-10) 

Relative error for the Buneman algorithm. 
Mesh #U 

Prob 1 Prob 2 Prob 3 Prob h 

pl 
M-n) 7 (-9) 6(-9) 8(-9) 

p2 
5(-ll) 6(-7) M-7) 7 (-7) 

p3 
3(-ll) 8(-6) 2(-5) l(-5) 

• 

1(-12) 5(-7) 6(-7) 8(.8) 

Pc U(-12) 6(-9) 7 (-9) 8(.10) 
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Relative error for MDj Mesh $k 

Prob 1 Prob 2 Prob 5 Prob ^ 

Pi 7(-7) 5 (-7) M-7) M-7) 

P2 2(-9) 6(-7) M-7) 7(-7) 

p3 2(-9) 8(.6) 2(-5) l(-5) 

PU 3(-9) M-7) 6(-7) 8(-8) 

p5 5 (-9) 9(-9) 9(-9) 2(-9) 

Relative error for PR, Mesh #k 

Prob 3 Prob 1 Prob 2 Prob h 

Pi K-n) 7 (-9) 6(-9) 8(-9) 

p2 6(-8) 6(-7) M-7) 7(-7) 

p3 l(-5) 8(-6) 2(-5) l(-5) 

Plf 6(-8) M-7) 6(-7) 8(-8) 

P^ M-n) 6(-9) 7(-9) 8(-10) 
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